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Abstract--The purpose of this paper is to collect, clarify, augment and modify the authors' previous work on the 
subject of finite strain compatibility. The derivations of the fundamental equations are reviewed so that the 
geometric meaning of each step can be explained. Besides providing a basis for the geological interpretations of 
the equations, these derivations also lead to a useful new form of the strain compatibility equations. 

We begin by showing that compatibility is a geometric property of continuous and smooth coordinate grids, 
and we derive and explain the coordinate grid compatibility equations. We then use the fact that every finite 
deformation may be described by two coordinate grids to derive finite strain compatibility equations in principal 
coordinates and Cartesian coordinates. The resulting strain compatibility equations are not easily solved for 
general strain fields in any coordinate system. Nonetheless, we show that many common geological strain patterns 
have simple geometries for which the compatibility equations can be interpreted. For example, if a deformation 
has constant strain in one direction, as most shear zones do, then compatibility provides an iterative method for 
determining the strain throughout the deformed region if the strain is initially known at any one point. Some of 
the other strain geometries to which we apply compatibility in this paper include simple shear, inhomogeneous 
pure shear, parallel and similar folding. 

INTRODUCTION 

ONE WAY tO specify a geological deformation is by 
comparing two coordinate grids, one embedded in the 
undeformed rock and the other in its deformed counter- 
part. Here the word 'embedded' means that the grid 
lines are material lines in the rock. The derivation of the 
finite strain compatibility equations described in this 
paper is based on the assumption that these grids are 
continuous and smooth over some region of interest and 
are independent of scale. In order to interpret the strain 
compatibility equations, therefore, we must first under- 
stand coordinate grids, grid continuity, and how these 
grids relate to the material deformations which they are 
used to describe. 

For example, the principal strain trajectories in a 
deformed rock form an orthogonal curvilinear grid and 
also form an orthogonal curvilinear grid when the defor- 
mation is removed (see Cobbold 1979 and 1980 for 
discussions). If these two curvilinear grids are continu- 
ous and smooth, then each must independently satisfy a 
set of grid compatibility equations. By relating the grid 
compatibility equations for the deformed state to those 
for the undeformed state, we can derive a single set of 
equations describing the continuity of the strain field. 
These equations are called the finite strain compatibility 
equations in principal coordinates. A similar approach is 
used to derive a set of strain compatibility equations in 
rectangular Cartesian coordinates. 

Whether expressed in principal coordinates or rectan- 
gular Cartesian coordinates, the finite strain compati- 
bility equations are not easily solved because they con- 
tain a large number of variables. There are several 
special strain geometries, however, for which one or 
more of these variables are zero. The following special 
strain geometries are considered explicitly in this paper: 
simple bending, uniform rotational strain, inhomogene- 
ous pure shear, uniform area strain, uniform shape 
change, constant strain in one direction and simple 
shear. Some of the common geological structures to 
which these special geometries apply include parallel 
folds (simple bending), shear zones and similar folds 
(constant strain in one direction), and layer parallel 
shortening thrusts (inhomogeneous pure shear; ter- 
minology after Geiser & Engelder 1983). 

THE COMPATIBILITY OF COORDINATE GRIDS 

Orthogonal coordinate grids 

By coordinate grid we mean a set of non-intersecting 
lines super-imposed on another set of non-intersecting 
lines such that each line in one set uniquely intersects 
each line in the other set. The individual lines making up 
a grid are defined to be infinitesimally spaced and are 
referred to as grid lines. The smallest region of space 
which we choose to consider and which is bounded on all 
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Fig. 1. Different types of coordinate grids: ia) general curvilinear (b) 
orthogonal curvilinear (c) oblique Cartesian (d) rectangular Cartesian. 

In each grid, a single grid e lement  is shown stippled. 
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Fig. 2. The distortion of any grid (a) can be described in terms of a 
common Cartesian grid, as shown in (b). A single grid element is 
shown shaded. The infinitesimal grid element  (c) distorts to a paral- 
lelogram (d). In terms of the common reference frame in (d) we 
have a = (OZ2/OX 0 dXi, b = (OZ,/OX2) dX:,  c = (OZt/OXI) dXt,  and 

d = (OZt/OX2) dX,.  

sides by grid lines is called a grid element. Grid elements 
are approximately parallel-sided due to their infinitesi- 
mal size. 

In a general curvilinear grid, the grid lines are not 
straight and do not intersect at right angles (Fig. la). If 
the grid lines are not straight, but do intersect at right 
angles everywhere, then we call this an orthogonal 
curvilinear grid (Fig. lb). If the grid lines are all straight 
lines, then the grid is said to be rectilinear. A Cartesian 
grid is a special kind of rectilinear grid which has the 
same spacing between grid lines, measured in some 
standard unit of measure such as centimeters, along each 
of its axes (McConnell 1957, pp. 36--40). Cartesian grids 
may be oblique or rectangular (Figs. lc & d), but will be 
assumed to be rectangular unless otherwise stated. 

The classical way to describe curvilinear grids is by 
means of mathematical transformations from Cartesian 
grids. This is normally done using the methods of tensor 
analysis, which require definition of covariant, con- 
travariant and mixed tensor components (see Ericksen 
1960, TruesdeU & Toupin 1960, Hobbs 1971). The ensu- 
ing mathematical complexity can be avoided, at least for 
the purposes of this paper, by viewing all curvilinear 
grids as distorted versions of some common Cartesian 
grid. All tensor and vector components can then be 
viewed as Cartesian in this common reference frame, 
and the distinction between covariant and contravariant 
components disappears. It is important to note that the 
distortion of a coordinate grid is only related to a 
material deformation if we state that this is the case. 

Distorted grids 

To see what we mean by grid distortion, consider a 
curvilinear grid, X (Fig. 2b), which we imagine to be 

obtained by distorting an initially Cartesian grid 
(Fig. 2a). To describe the distorted grid, X, set up a new 
Cartesian grid, Z, which shares the same origin and 
orientation as the original grid (Fig. 2b). We call Z the 
common reference frame. 

The distortion of grid X, if it is continuous and smooth, 
can be described mathematically using the transforma- 
tion 

Xl = Fx(Zt,Z2) X2 = F2(ZI,Z2), (1) 

where F1 and Fz are independent,  single-valued func- 
tions. Under very general conditions, we can invert (1) 
and obtain 

Z l  = F ~ ( X I , X 2 )  Z2 = F~(Xt,X2), (2) 

where F{ and F~ are also independent and continuous 
functions. 

Now consider an infinitesimal element of the cur- 
vilinear grid (Fig. 2d). This grid element approximates a 
parallelogram and is obtained by the distortion of an 
initially rectangular grid element (Fig. 2c). Any element 
of arc can be described either in terms of the distorted 
grid, X, or the common Cartesian grid, Z. In terms of the 
distorted Xgrid,  an element of arc will have components 
dXl and dX2, while in terms of the common Cartesian 
frame the same element of arc will have components dZ1 
and dZ2. The relationship between these two sets of 
components is a linear one 

OZ~ dX, (3) d Z  i = - ~ j  

where the matrix components OZi/OXj are transformation 
gradients with simple geometric meanings (Fig. 2d). 
Viewed in terms of a Cartesian reference frame, the 
transformation gradients are components of a Cartesian 
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tensor. In classical tensor analysis, however, they would 
be components of a tensor with mixed covariant-con- 
travariant components. 

The length, dS, of an element of arc in the Z grid is 
given by 

dS 2 = dZ~ + dZ~ = dZk dZk. (4) 

To obtain the equivalent length in the X grid, simply 
substitute (3) into (4) to get 

where the 

dS 2 = Gij dXi dXj, (5) 

OZk OZk 
Gi j -  OX~ OXI (6) 

are components of the metric tensor. Here the Gij are 
considered to be Cartesian components, although in the 
classical theory they would be covariant components. 

The polar decomposition theorem states that the mat- 
rix of transformation gradients (3) can be decomposed 
into a pure shape change followed by a pure rotation 
(Ericksen 1960, pp. 840-842, Truesdell & Toupin 1960, 
p. 274). An infinite number of other decompositions are 
also possible, but the advantage of this particular decom- 
position is that its components represent simple geomet- 
ric operations 

X1 I = [H,  l c o s A  - H21 s i nA ,  - H z 2 s i n A  + H a 2 c o s A ]  

OZ, ~aZ~ LHII sin A + H21 cos A, Hz2 cos A + H n  sin AJ  
/ / 

= -s"A]r",, ",q 
Lsin A cos L H2' H:;I  (7) 

where H is symmetric (H12 = H21 ) and represents a pure 
shape change. The angle A is the orientation of the 
distorted grid element; measured as the angle between 
one axis of the common frame, Z, and one of the two 
perpendicular lines in the distorted grid element which 
are not rotated by the shape change component of the 
transformation. In order to maintain internal consis- 
tency, we always measure A as the angle (anti-clockwise 
positive) between the direction of maximum extension 
in the distorted element and the Z1 axis of the common 
frame. Note the direct analogy with simple homogene- 
ous strain, but recall that (7) represents a grid distortion 
and not a material deformation. 

When the distorted grid is orthogonal curvilinear, 
then its individual grid elements are rectangular. In this 
case (followed in the next section), the symmetric part of 
the decomposition (7) simplifies to a diagonal matrix; 
the components of which are called scale factors (Mal- 
vern 1969, p. 643). In this case, the transformation (2) 
can be equivalently written 

hZ, 

aZ, aZ, HI sin A H, cos sin A cos A.] 0 

(8) 

where H~ are the scale factors. These scale factors are the 

reciprocals of the magnification factors described by 
Borg (1963, p. 69). 

Matrix multiplication is not commutative, so the order 
of the product in (8) is significant. The rule is that the first 
transformation to occur is the one on the right, and later 
operations accumulate successively to the left (Truesdell 
& Toupin 1960, p. 246, Eiliott 1972, pp. 2622-2623). In 
(8) the shape change is to the right of the rotation, which 
is referred to as right polar decomposition. 

Grid compatibility 

The preceding discussion is concerned only with the 
transformations for isolated grid elements. Neverthe- 
less, all of the grid elements making up a continuous and 
smooth grid must fit together without gaps or overlaps. 
It follows that two adjacent grid elements must be 
compatible at their common boundary and the transfor- 
mations (8) which describe the geometry of these grid 
elements cannot be independent. The functions which 
define the transformation for a grid element in terms of 
its position in the distorted grid are called coordinate 
grid compatibility equations. 

The stipulation of grid continuity and smoothness 
requires that the differentials in (3) exist at every point in 
the region of interest, and this is the only pre-requisite to 
the following derivation of the coordinate grid compati- 
bility equations. We begin the derivation with the rule of 
mixed second partial derivatives (Thomas & Finney 
1979, pp. 629-632) 

02Zi - O2Zi (9) 
axj axk axj 

Substituting the elements of the orthogonal transfor- 
mation (8) into the continuity and smoothness require- 
ment (9) gives 

0 0 
- -  (Hi cos A) = 
aX2 aX~ 

o 0 

( -H2  sin A) 

(10) 

(H 1 sin A) - (H2 cos A) 
0 S  2 ~ S  1 

which after some reordering yields the compatibility 
equations for orthogonal curvilinear coordinate grids 

OA -1  OH 1 OA 1 OH2 
- -  - - -  - - -  ( 1 1 )  

OX1 H: 02(2' 3X2 H~ OX1 

Equations (11) were first introduced in the geologic 
literature by Cobbold (1980, equations 5). If an ortho- 
gonal curvilinear grid does not satisfy these equations 
over some region, then the grid lines making up that grid 
are not continuous and smooth curves in that region. 

Finally, since it is possible to define linear transfor- 
mations for non-orthogonal grid elements (equation 7), 
and since a coordinate grid does not need to be ortho- 
gonal in order to be continuous and smooth (Fig. la), it 
follows that coordinate grid compatibility must also 
apply to general curvilinear grids. Substituting the ele- 
ments of the transformation (7) into the continuity 
requirement (9) and simplifying gives 
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Z Z 

Fig. 3. Material deformations are described by the deformation of 
embedded coordinate grids. In order for this description to meaning- 
fully describe the finite strain, both grids must be described relative to 

the common reference frame, Z. 

OA 1 (_HIIOHII + HllOHi2 - OH,1 H210H22] 
O X l  - H A  0X2 ~ 1  H21 ~ "  + 
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(12) 

0H22 H22 0H2I + Hi2 OH'2 c)HlJl OA _ 1 H2: _ 
HA O X , 2 7-2-?, " ' : / 

where HA = H~IH22 - Hl2H2~ is the ratio of the area of 
one element of the common frame, Z, to the area of the 
distorted element in the Xgrid. Note that equations (12) 
simplify to the compatibility equations for orthogonal 
grids (11) when H~? = H21 = 0. 

THE COMPATIBILITY OF FINITE 
STRAIN FIELDS 

The compatibility equations for coordinate grids pre- 
sent a relationship between the shape and the orientation 
of grid elements which is valid anywhere in a continuous 
and smooth grid. In order to make the jump from grid 
compatibility to strain compatibility, we have to find 
ways of associating coordinate grids with deformed 
rocks. By taking two different approaches to this grid/ 
rock relationship, we derive two equally valid sets of 
strain compatibility equations, one in principal coordi- 
nates and one in rectangular Cartesian coordinates. The 
geometry of the strain field for a particular geologic 
application will determine which set of equations is more 
useful. 

Grids and material deformations 

Consider an arbitrary curvilinear coordinate grid 
embedded in a slab of rock. If this rock is subsequently 
deformed, then the coordinate grid will also change 
shape (Fig. 3). It follows that there are two grids 
associated with every deformation, the grid we define in 
the undeformed rock and its deformed counterpart. 
These grids are composed of material lines, so the 
geometry of each grid element in the undeformed rock is 
linked to the geometry of its deformed counterpart by 
the finite strain (Cobbold 1979, p. 68). Since infinitesimal 
grid elements are parallel sided, the finite strain will be 
homogeneous on the scale of a single grid element, 
although it will generally vary between grid elements. 
The finite strain compatibility equations describe how 

the strain varies from one grid element to the next in a 
continuously and smoothly deformed material. 

Since geologists rarely observe the undeformed state. 
the deformed state grid provides the most convenient 
reference frame for applying the compatibility equa- 
tions. Our first set of equations is derived by considering 
the compatibility of a grid composed of principal strain 
trajectories, since this grid is orthogonal both before and 
after any deformation. We will then derive a second set 
of equally valid equations by considering the compati- 
bility of a rectangular Cartesian grid embedded in the 
deformed state, and its counterpart before the defor- 
mation. In this case, the undeformed grid is not generally 
orthogonal, but the result is a compatibility equation 
which describes the strain field using simple Cartesian 
coordinates. 

Strain compatibility: principal coordinates 

For every deformation there is one orthogonal grid 
which can be embedded in the undeformed rock that will 
remain orthogonal after the deformation. This is the 
unique grid that deforms to become the principal strain 
trajectory grid in the deformed state (Cobbold 1979, 
p. 68). Unless discontinuities have developed in the 
material during deformation, both the undeformed state 
and deformed state grids must simultaneously satisfy the 
orthogonal grid compatibility equations. We may there- 
fore subtract the orthogonal grid compatibility equations 
(11) for the undeformed state from the same equations 
as written for the deformed state. To distinguish these 
sets of equations, all variables referring to the unde- 
formed state are represented by capital letters, while 
those referring to the deformed state are represented by 
small letters. Thus 

Oa c~A 
Oxl OX1 

Oa OA 

O X  2 O X  2 

- 1  Oh1 1 OHl 
_ _  - -  _ _  -.[- 

h20x~ H 2 0 X ,  
(13) 

1 0h 2 1 OH 2 

hi Oxl H~ O X  1 

Since the spacing between grid lines is unity in both 
the undeformed and deformed strain trajectory grids, 
and since these grids represent the same set of material 
lines at different points in time, Xi and xi are completely 
interchangeable in equation (13). The point (3,2), for 
example, represents the same material point in both the 
xi and Xi grids. We can thus say that aalOx~ = OalOXl, 
even though a represents the orientation of the 
deformed state grid line on both sides of the equality. 

Furthermore, if the orientation of the grid element in 
both its deformed and undeformed states is given rela- 
tive to the same common frame, then the difference 
between these orientations will be the rigid body rota- 
tion. In other words, ~o = a - A where w is the rigid 
rotation and a and A are the respective orientations of 
the deformed and undeformed grid elements. Anti- 
clockwise rotations are taken to be positive. 

We now simplify equation (13) by taking all deriva- 
tives with respect to the deformed state grid and then 
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substituting the rigid rotation, to, for the difference in 
orientations 

Ow - 1  Oh~ 1 OH1 

Ox~ h2 Ox2 H~ 3x2 

3m 1 Oh 2 1 3H 2 

OX 2 hj Ox 1 Ht 3xl 

(14) 

We have chosen to express all variables in terms of the 
deformed state because in geology this is what we most 
often observe. An equally valid form of (14) can be 
written in terms of the undeformed state, if necessary. 

Because both grids are locally Cartesian, Cutler & 
Elliott (1983) wrote a simple transformation of the form 
(8) to unstrain an element of the deformed grid directly, 
yielding its corresponding element in the undeformed 
grid. Implicit in their analysis is the fact that the scale 
factors, Hi, are constants everywhere in the undeformed 
strain trajectory grid and can thus be chosen arbitrarily. 
Actually, in a curvilinear grid the scale factors in any one 
direction are arbitrary, but once these are chosen the 
scale factors in the other direction are constrained by the 
grid compatibility equations (11). By holding the scale 
factors constant in both directions in the undeformed 
state, Cutler & Elliott (1983) implicitly required that the 
undeformed grid be either oblique or rectangular Carte- 
sian. The validity of this statement may be checked by 
referring to equations (11). While it is mathematically 
possible to define the undeformed strain trajectory grid 
to be Cartesian, the geologic applications of this practice 
may be limited. 

Now, the ratios of the deformed state scale factors to 
the undeformed state scale factors for one grid element 
are the principal stretches for that infinitesimal region of 
the grid. We will have more use for the reciprocal 
principal stretches, t~ and t2 where 

HI H2 
tl - t . . . . . . .  (15) 

h~ h2 

Substituting (15) into (14) would give the finite strain 
compatibility equation as derived by Cobbold (1980, 
equation 12). 

Here we present a new form of the equations by 
rewriting them in terms of true distances and the curva- 
tures of the principal strain trajectories in the deformed 
state. The resulting equation will be geologically more 
useful because strain trajectory curvatures can often be 
measured in rocks and because the scale factors cancel 
out. The first step is to substitute (15) into (14), but also 
re-use (11) and let R~ = t2/t ~ be the axial ratio of the strain 
ellipse 

Oto - Oa ( l _ _.~_s) + hi 1 0  ln t 1 
OX1 OXl h2 Rs Ox2 

(16) 
0to _ 0 a  (1  - R ~ )  - h2  0 1 n t  2 
0x~ 0x~ ~ K - - ' 0 x l  

Now, curvature is defined as the change in the orienta- 
tion of a line with respect to a change in arc length along 
that line. so the terms Oa/Ox~ and Oa/Ox~ in equations 

(16) do not represent curvatures. The spacing between 
grid lines in the x grid will generally vary with position in 
the grid and cannot, therefore, be simply used as stan- 
dard measures of arc length. In order to convert the 
independent variables, xi, in (16) so that they correspond 
to standard units of measure, expand (16) using the 
chain rule 

3to 3sl _ Oa Osl ( 1 - - ~ s )  + hi 1 0 l n t ,  Os2 
Osl 3x~ 3sa Oxl h2 Rs Os 2 Ox 2 

(17) 
Oto Os2 _ Oa Os2 (1 - Rs) - h 2  0 in t, OSl 
Os2 Ox2 Os, Ox2 -~1 Rs ------:" ' 

. Osl 8x~ 

where sl and s2 are true arc lengths measured in the x 
grid. Since (17) now contains changes in orientation with 
respect to changes in true arc length, we can make use of 
the curvatures of the deformed state grid lines, ki = 
Oa/Osi. The terms Osi/Oxi are the ratios of the grid line 
spacing as measured in true distance to the same spacing 
measured in grid units. If we define our common refer- 
ence frame such that its spacing is unity in whatever true 
distance system we are using (centimeters, miles, etc.) 
then these ratios become the scale factors hi (Cobbold 
1980, p. 380). Appropriately substituting ki and hi into 
(17) gives 

0to ( 1 )  1 O l n t l   -k,I-E +L G 
(18) 

0to 0 In t2 
- k : ( 1  - R ~ )  - R~ ~ .  

Os2 Osl 

Equation (18) is perhaps the simplest form of the finite 
strain compatibility equations in principal coordinates. 
Note that all of the scale factors have dropped out and 
that all position changes are measured in true distance. 
Unless the strain field itself is truly one-dimensional, we 
cannot eliminate w between the two equations in (18) 
using the process of one-dimensionalization (Cutler & 
Elliott 1983, appendix 2). Examples of how we can make 
use of this special case are presented in the sections on 
simple shear and constant strain in one direction. 

Strain compatibility: Cartesian coordinates 

The strain compatibility equation in principal coordi- 
nates was derived by combining the grid compatibility 
equations for the deformed and undeformed states. 
Recall that we had a choice of expressing the final 
equation with respect to either the deformed state grid 
or the undeformed state grid. It follows directly that if 
we want to derive a strain compatibility equation in 
rectangular Cartesian coordinates, then either the 
deformed state grid or the undeformed state grid must 
be rectangular Cartesian. 

Since we deal with the deformed state for most geo- 
logical applications, we will consider the situation of a 
rectangular Cartesian grid embedded in the deformed 
rock. In general, this Cartesian grid will undeform to 
become a non-orthogonal curvilinear grid. From equa- 
tion (11) we see that the deformed state Cartesian grid 
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(Oa/Ox~ = O) is continuous as long as h~ and h2 are 
constants. Setting hi = c and ha = c everywhere in the 
deformed state grid, equation (15) gives 

Ctij = Hij C2ta = Ha,  (19) 

where tq are the components  of the reciprocal stretch 
tensor,  ta is its second invariant and c is any constant. It 
is important  to note that the components  of the scale 
factor tensor are only related to the stretches by (19) 
because one of the grids is orthogonal.  It is not in general 
true that t 0 = H 0 for a transformation between two 
non-orthogonal  grid elements. 

Again, two sets of grid compatibility equations have 
to be satisfied. The undeformed state grid has to satisfy 
the more general equations (12), while the deformed 
state grid satisfies both the orthogonal  grid equations 
(11) and the relationships (19) given above. The rest of 
the derivation is similar to that for the equations in 
principal coordinates,  and involves the following steps: 
subtract equation (12) from equation (11) and substitute 
to -- a - A for the rotational component  of the defor- 
mation,  express all of  the independent  variables in terms 
of the deformed state, substitute the relationships (19), 
and finally note that Ohi/Oxj = 0. The result of this 
derivation is the following set of finite strain compati- 
bility equations referred to a rectangular Cartesian coor- 
dinate system in the deformed state 

Oto Ot~l _ 0t12 Or21 _ 0t22 
t a o x - - - - ~ l = t l l ~ X  2 t l l  -~XI + t21 -~X 2 t 2 1 0 x  I 

(20) 
Oto 0t22 Ot21 Ot12 Otl l 

--ta-~xz = t22 ~X1 -- t22-~X~ + tl2-~Xl - t12 OX 2 

Note that all of the constants have dropped out. Equa- 
tion (20) was first derived by Cobbold (1977a, equation 
7) and later rederived and discussed by Cutler & Elliott 
(1983, equation A l l ) .  

SPECIAL CASES OF THE FINITE STRAIN 
COMPATIBILITY EQUATIONS 

Simple  bending (parallel fo lding)  

Parallel folds (class 1B of Ramsay 1967) occur when a 
layer of rock is folded such that (1) a set of initially 
parallel layer boundaries remain parallel after the defor- 
mation and (2) there is no shear parallel to the layering 
(Fig. 4a). An ideal parallel fold has a strain geometry  
referred to as simple bending, which occurs when one set 
of strain trajectories is parallel to the folded layering and 
the other  is parallel to the dip isogons. The first appli- 
cation of compatibility to the simple bending geometry  
was by Cobbold (1980, p. 382), who used it to show that 
the undeformed strain trajectory grid is rectangular 
Cartesian. The difference between simple bending and 
other  geometries with straight trajectories is that with 
simple bending, one set of strain trajectories is straight 
in both the deformed and undeformed states, so that the 
rotational gradient along all straight trajectories is zero. 

i 

(a) (b) 

Xr 

(c) (d) 

Fig. 4. The strain geometries of some geological structures for which 
simplified forms of the compatibility equations may be derived (a) 
parallel fold (b) region of inhomogeneous pure shear (c) shear zone (d) 
similar fold. Deformed state stretch trajectories are labelled 

s~ and s..  

In an ideal parallel fold, the geometry of the strain 
field changes at the neutral surface (the dashed line in 
Fig. 4a) as the direction of maximum extension becomes 
the direction of maximum compression. Here ,  we con- 
sider only the outer  extensional region of a fold. Our 
results can be applied directly to the inner arc of a 
parallel fold by interchanging the indices and changing 
the signs in equations (21) and (22). In the outer  arc of a 
parallel fold we have 

0to 0to 
k 2 = 0 - -  = 0 kl = (21) 

Os2 Os~ 

Using the fact that 0 < Rs < 2,  the finite strain compati- 
bility equations (18) become 

0 In t~ 0 In t~ 
kl - - -  0 - ---------=" (22) 

Os 2 Osl 

In other  words, the principal reciprocal stretch gra- 
dient perpendicular  to the layering is equal to the curva- 
ture of that layer .  Using a right-handed coordinate 
system and considering an antiformai parallel fold, kl 
will be negative and t~ will increase from the outer  
surface toward the neutral surface. Ramsay (1967, 
p. 399) showed a direct relationship between the curva- 
ture of a parallel fold and the strain at some distance 
from the neutral surface. Note however that he assumed 
no area change in deriving this relationship, an assump- 
tion not contained in (21) or (22). 

Uniform rotation 

Uniform rotational strain, as the name implies, occurs 
when every grid e lement  in some region is rotated by the 
same amount.  In terms of the compatibility equations 
we have Oto/Osl = 0 and Oto/Os2 = 0, so that the compati- 
bility equations (18) for this case are 

0 In tl 
k ~ ( 1  - R s )  - 

c~s 2 
(23) 

0 [n t2 
k~(1 - Rs) = R s - - .  

c~sl 
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For  the most general case of deformation with uniform 
rotational strain, the deformed and undeformed state 
strain trajectory grids are both curvilinear. 

Inhomogeneous pure shear 

If a deformation is such that the rotation is uniform 
and the strain trajectories are straight in both the 
deformed and undeformed states (Fig. 4b), then we 
have kj = k2 = 0 in addition to the uniform rotation 
constraint Oto/Os~ = Oto/Os2 = O. In this case, the defor- 
mation is one of inhomogeneous pure shear and the 
finite strain compatibility equations (18) are 

Ot 1 Ot 2 
- - -  - 0 ( 2 4 )  

Os2 OSl 

where again 0 < (Rs, tl, t2) < ~. In order  to determine 
the continuity of an inhomogeneous pure shear defor- 
mation,  we need only to measure the strain at two points 
on the same strain trajectory and show that (24) is 
satisfied. Fur thermore ,  since only one of the principal 
strains is free to vary in a given principal direction, any 
gradient in the longitudinal strain results in an area 
strain gradient. Cobbold (1977b) and Cutler & Elliott 
(1983) reached essentially the same conclusions in their 
respective discussions of banded deformation structures 
and pure flattening, but they considered strain which 
varies in one direction only. 

Geologically, inhomogeneous pure shear defor- 
mations are usually associated with compaction due to 
lithostatic loading. However ,  an inhomogeneous pure 
shear deformation may include strain gradients both 
parallel and perpendicular  to the compaction direction. 
This type of inhomogeneous pure shear deformat ion 
may apply to thrust sheets which have been compacted 
prior to being tectonically shortened during thrusting (as 
described by Geiser & Engelder  1983). 

Uniform area strain 

In nature,  area strain is difficult to measure,  and the 
most common assumption is that there has been no area 
change due to deformation.  The no area change assump- 
tion provides a single relationship between the two 
reciprocal stretches, namely t~ = 1/t2. In studies of 
homogeneous  deformation,  this relationship is often 
sufficient to bring about important  simplifications of the 
governing equations. The description of general 
inhomogeneous deformations,  however,  involves too 
many variables for this relationship to be useful on its 
o w n .  

No shape change (con formal deformation) 

Now consider the case of no deviatoric strain, so that 
Rs = 1 or tl = t, = t. For this case it will be most beneficial 
to begin with the compatibility equations as expressed in 
(16). which now become 

0to h 1 0(ln t) Oto - h  2 O(ln t) 
. . . . .  (25) 
Ox I h, Ox~ Ox_, h 1 Ox 1 
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Equations (25) are the Cauchy-Riemann equations in 
general curvilinear coordinates.  It follows directly that to 
and In t are solutions of Laplace's equation (see Appen-  
dix and Cobbold 1977a). As such, we can immediately 
write 

zc 

to = ~ a, e -~x: sin (nxl) 
1 

(26) 

In t = ~ b, e -"x2 sin (nxl),  
1 

where the constants of integration are chosen to satisfy 
the boundary conditions in each case. Fur thermore ,  if to 
and In t satisfy (26) over some closed region, then they 
must have their maximum and minimum values on the 
boundary of that region. The case of no shape change is 
subsequently one of the most potent  restrictions that we 
can place on a strain field, although geologically relevant 
applications for this strain geometry may be rare. 

Large strains 

An interesting case of the compatibility equations 
occurs when the axial ratio is large. In this context,  large 
is approximately taken to mean 20 < Rs < ~. If Rs is large 
and 0 In tl/OS 2 and Oto/Os2 are not correspondingly large, 
then the compatibility equations (18) simplify to 

0to - 0  In t 2 
kl - ke - - -  (27) 

Osl Osl 

In other  words, the extension direction strain t rajectory 
asymptotically approaches a straight line in the unde- 
formed state grid, which is the necessary condition for 
k~ =Oto/Os 1. Note the similarity between (27) and the 
compatibility equations for parallel folds. 

Constant strain in one direction (banded deformation 
structures) 

Much of the material in this section has been adapted 
or modified from Cutler & Elliott 's (1983) discussion of 
refracted cleavage and ductile deformation zones. Con- 
stant strain in one direction means that the state of strain 
does not vary along a given line through a continuously 
deformed region, or any line parallel to that line. If the 
strain is constant in one direction, then all variation in 
the strain can be expressed in terms of one independent  
variable. Geological structures having this strain 
geometry have been referred to as banded deformation 
structures by Cobbold (1977b). Some geologic structures 
which may have this strain geometry include shear zones, 
refracted cleavage, some deformed stratigraphic sec- 
tions, and similar folds. For our  purposes,  a shear zone 
will be defined as a zone of heterogeneous simple shear 
with or without a superimposed homogeneous  strain. 

Having established the one-dimensional nature of a 
deformation,  the independent  variables Sl and s: in (18) 
can both be written as functions of a single position 
variable. The position variable we use is the angle 
between the direction of maximum extension and the 
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direction of constant strain, a. This choice is valid as long 
as s1 and s2 are single valued functions of a along any 
monotonically increasing or decreasing segment of s 1. 
The uniqueness requirement  makes it necessary that a 
always be acute and positive in this context.  The reason 
that s2 is a unique function of a follows from the fact that 
the orientations of st and s2 differ by exactly 90 degrees. 
In other  words, all strain gradients taken with respect to 
ot are the same, whether  they are taken along st or s2. 

To transform the compatibility equations (18) from 
two independent  variables to one, begin by using the 
chain rule to expand the partial differentials in (18) 

Ow Oa ( 1 )  1 0 l n q  Oa 
1-E +ks 

(28) 
0w 0a 0 In t 2 0a 

- - -  k z ( 1 -  R s ) -  R , - -  
0 a  0S 2 00~ 19S 1 

Next,  recall that the curvatures of the principal trajec- 
tories a r e  k i = aot]Osi; eliminate the rotational gradient 
between the two equations; and introduce the principal 
reciprocal quadratic stretches A' i = t 2 

k 2 0h~ k I 0h~ 
2(A~ - A~) - kt aa  + k-~ a---~" (29) 

In order  to solve (29) for A{ and X~ we need a second 
relationship between these two variables. The uniform 
area strain assumption, that tZa is a constant,  provides the 
necessary relationship and we substitute t~ = A~A; into 
(29) 

0A I 2k(A~ 3 - A~t 2) 
aa  (k2A,t 2 _ t2a) , (30) 

where k = k2/kt. If the deformed state strain trajectory 
grid can be constructed,  as it often can in foliated rocks, 
then the curvatures of these trajectories can be directly 
measured at any point in the deformed zone. Equat ion 
(30) can then be used iteratively to find the strain at any 
point in this grid, as long as the constant strain in one 
direction and uniform area strain criteria are met. Note 
that the iterative application of (30) will require initial 
values for A I and t 2, which are the boundary conditions 
in the problem. For most geological applications, it will 
be necessary to assume that ta 2 = 1. Nevertheless,  these 
boundary conditions may be evaluated at any point in 
the deformed region, as long as that point then becomes 
the starting point for the iterative process. 

The compatibility equations in Cartesian coordinates 
can be used to gain additional insight into constant strain 
in one direction deformations.  If xt is taken parallel to 
the direction of constant strain (Fig. 4c), then all of the 
strain gradients in the x~ direction are zero and the 
compatibility equations (20) become 

c3 (/,211 + /,21 ) _ OA~t _ 0 
OX'~ OX 2 

(31) 
0~o Otel Otl t 

/,a ~--X2 : 122 OX 2 "4- t12 C]X2 

where A' = t z and tl2 = t21 , so All = t~t + /,~2 (Cobboid 

1977a, equation 5, Cutler & Elliott 1983, equation A7). 
Equat ion (31) says that A 11 must be constant evervwhere 
in a constant strain in one direction deformation.  If the 
deformation is also one of uniform area strain, then the 
pole curve for this geometry becomes a parabola and the 
method of Cutler & Elliott (1983) can be used to find the 
Mohr  circle at any point in the deformed zone. Thus, the 
equations in both principal and Cartesian coordinates 
provide ways to predict the strain as long as the area 
strain is uniform and boundary conditions are obtain- 
able. 

Ideal similar folds (class 2 of Ramsay 1967) have 
straight and parallel dip isogons (Ramsay 1967, p. 367, 
Elliott 1968), so that the geometry of the folded layers is 
constant parallel to the axial plane. Assuming that the 
layering was parallel prior to the deformation,  the 
deformed layer geometry indicates that the strain must 
be constant parallel to the axial plane (Ramsay 1967, 
p. 422, Cobbold 1977b). Thus, ideal similar folds satisfy 
the constant strain in one direction equations and equa- 
tion (30) can be used to predict the strain at any point in 
a similar fold with uniform area strain. Fur thermore ,  in 
a similar fold oriented with x~ parallel to the axial plane 
(Fig. 4d), equation (31) requires that A 11 be constant in 
both the limbs and hinge of the fold. 

A comparison of the strain geometry of a similar fold 
to the strain geometry of a shear zone shows that a 
similar fold simply represents a pair of shear zones 
placed back-to-back with their shear directions making 
up the axial plane. Since the cleavage in a shear zone can 
only parallel the shear direction when the axial ratio 
becomes infinite, it follows that the cleavage in a similar 
fold can only truly parallel the axial plane under  equiva- 
lent circumstances. A superimposed homogeneous  
strain will not affect any of the above results, as the strain 
will still be constant parallel to the axial plane. These 
observations are in agreement with the geometric 
analysis of similar folds by Ramsay (1967, pp. 421-436). 

Equivalent analyses pertain to cleavage refraction 
and continuously deformed stratigraphic sections. In 
both cases the bedding surfaces must be parallel and the 
deformation constant along the layering. Constant strain 
along the layering is generally indicated by a foliation 
which has a constant orientation in this direction. In the 
case of a deformed stratigraphic section, care must be 
taken that bedding plane slip is of negligible importance 
or the continuity assumption breaks down. 

Simple shear 

The geometry of two-dimensional simple shear defor- 
mations requires that (1) the boundaries of the deformed 
region be parallel and (2) the deformation be one of no 
area change. In this section we present an analytical 
solution to the compatibility equations (18) for the 
special case of simple shear. The result is a relationship 
between the curvatures and orientations of the principal 
strain trajectories. Simple-shear deformations necessar- 
ily satisfy this relationship, although every deformation 
which satisfies the relationship is not necessarily one of 
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' X ~  
I I 

X I 

Fig. 5. A simple shear deformation showing a single grid element in 
both the deformed and undeformed states. The shear direction is 
parallel to x~, and A and a are the orientation of the grid element 
before and after the deformation respectively. The rotation is there- 

fore to = cr - A. 

simple shear. In fact, the relationship derived here turns 
out to be diagnostic of constant strain in one direction 
deformations,  of which simple shear is a special case. 

The following simple-shear equations have been 
adapted from Truesdell & Toupin (1960, pp. 292-295) 
and Treagus (1981). If deformation is known to have 
taken place by progressive simple shear, then the state of  
strain becomes a function of the orientation of the 
deformed state grid element, a. Consider the defor- 
mation shown in Fig. 5. If M is the material line that 
deforms to become the direction of maximum extension, 
m, then w = a - A is the rotation, M = H 1 , and m = hi. 
From simple tr igonometry we have M = see (a) ,  and 
since the simple shear model requires that a = 45 + (to/2) 
= 9 0  - A, we also have rn = cosec (a).  The principal 
reciprocal stretches become 

tl = t a n a  t~ = cot a ,  (32) 

where t~ follows from the plane strain requirement t~ = 
1/t2. We can also use tr igonometry and (32) to show a 
direct relationship between a and y, the shear strain, as 
well as between a and the axial ratio R~ 

y = cot a - tan c~ (33a) 

R s = cot 2 a. (33b) 

Since simple shear is a special case of constant strain in 
one direction, we begin by substituting (32) and (33) into 
the compatibility equation (24), and then use the iden- 
tities sec 2 (a)  = tan 2 (a)  + 1 and k = k2/k l  to simplify the 
result 

k 2 tan ~ er - k(tan 3 a - tan a i  - 1 = 0. (34) 

Equation (34) must be satisfied by all inhomogeneous 
simple shear deformations. Now, (34) is quadratic in k 
and can be solved using the quadratic formula. There are 
two real roots to this equation, cot (a)  and - c o t  3 (tx), but 
the ratio of the curvatures of the principal trajectories 
can only have a single value. The meaningful root  to (34) 
must be 

k = cot a,  (35) 

since by the definition of curvature, k, is never a negative 
number.  
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A P P E N D I X  

We wish to prove that to and In t satisfy the Laplacian in the case of a 
conforrnal deformation. The compatibility equations for conformal 
deformations (25) are 

dto hi 01nt  Oto -h~ 31n t 
- - -  ( A 1 )  

8xl - h2 Ox2 Ox2 hi Oxl 

Using the fact that second mixed partial derivatives of to are equal, we 
can eliminate to in equation (A1) 

+ = 0. (A2) 
Ox~ bx~ ~ Ox2 

Exactly the same approach can be used to eliminate In t from (25) 
giving the parallel result 

- -  + = 0 .  ( A 3 )  
0xl 

The Laplacian equation in general curvilinear coordinates is: 

1 O h2 Of + ~ = 0 .  ( A 4 )  

hlh2 

where f is any continuous potential function (Borg 1963 p. 80). 
Substituting (A1) and (A2) into (A3) gives 

hlh:V 2 In t = hlh:V2to = 0. (A5) 

Finally, we note that 0 < (h~ ,h:) < :~ by conservation of mass, so that 
we can safely eliminate these terms from (A5) 

V-" In t = V:to = 0 (A6) 

which proves that both In t and to satisfy the Laplacian rule and are 
potential functions for any inhomogeneous strain field without shape 
change. 


